3.341 \(\int \frac{a B+b B \cos (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=58 \[ \frac{2 B \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{d \sqrt{a+b \cos (c+d x)}} \]

[Out]

(2*B*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt[a + b*Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.0447992, antiderivative size = 58, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.107, Rules used = {21, 2663, 2661} \[ \frac{2 B \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{d \sqrt{a+b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a*B + b*B*Cos[c + d*x])/(a + b*Cos[c + d*x])^(3/2),x]

[Out]

(2*B*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt[a + b*Cos[c + d*x]])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rubi steps

\begin{align*} \int \frac{a B+b B \cos (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx &=B \int \frac{1}{\sqrt{a+b \cos (c+d x)}} \, dx\\ &=\frac{\left (B \sqrt{\frac{a+b \cos (c+d x)}{a+b}}\right ) \int \frac{1}{\sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}}} \, dx}{\sqrt{a+b \cos (c+d x)}}\\ &=\frac{2 B \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{d \sqrt{a+b \cos (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.0478468, size = 58, normalized size = 1. \[ \frac{2 B \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{d \sqrt{a+b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*B + b*B*Cos[c + d*x])/(a + b*Cos[c + d*x])^(3/2),x]

[Out]

(2*B*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt[a + b*Cos[c + d*x]])

________________________________________________________________________________________

Maple [C]  time = 0.404, size = 76, normalized size = 1.3 \begin{align*} 2\,{\frac{B}{d\sqrt{2\,b \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+a-b}}\sqrt{{\frac{2\,b \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+a-b}{a+b}}}{\it InverseJacobiAM} \left ( 1/2\,dx+c/2,{\frac{\sqrt{2}\sqrt{b}}{\sqrt{a+b}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))^(3/2),x)

[Out]

2*B/d/(2*b*cos(1/2*d*x+1/2*c)^2+a-b)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a+b))^(1/2)*InverseJacobiAM(1/2*d*
x+1/2*c,2^(1/2)/(a+b)^(1/2)*b^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B b \cos \left (d x + c\right ) + B a}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((B*b*cos(d*x + c) + B*a)/(b*cos(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{B}{\sqrt{b \cos \left (d x + c\right ) + a}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral(B/sqrt(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B b \cos \left (d x + c\right ) + B a}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((B*b*cos(d*x + c) + B*a)/(b*cos(d*x + c) + a)^(3/2), x)